Deprecated: Creation of dynamic property Drupal\mysql\Driver\Database\mysql\Connection::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Logger\LogMessageParser::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\dblog\Logger\DbLog::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Logger\LoggerChannelFactory::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Session\AccountProxy::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Site\Settings::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\CacheFactory::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\ChainedFastBackendFactory::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\DatabaseCacheTagsChecksum::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\DatabaseBackendFactory::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\DatabaseBackend::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Config\CachedStorage::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Config\ExtensionInstallStorage::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\DatabaseBackend::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\DatabaseBackend::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Extension\ModuleHandler::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\DependencyInjection\ClassResolver::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property ArrayObject::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Validation\ConstraintManager::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Config\TypedConfigManager::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Language\LanguageDefault::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\language\Config\LanguageConfigFactoryOverride::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Config\ConfigFactory::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\Context\CacheContextsManager::$_serviceId is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Component/DependencyInjection/Container.php on line 288

Deprecated: Creation of dynamic property Drupal\Core\Cache\Context\CacheContextsManager::$validContextTokens is deprecated in /is/htdocs/wp11246554_9C0GUOGAIQ/dualize/web/core/lib/Drupal/Core/Cache/Context/CacheContextsManager.php on line 265
6.2. Ableitungsregeln | Arbeitsgruppe Geometrie und Topologie

6.2. Ableitungsregeln

Die wichtigste Rechenregel für Ableitungen ist die Kettenregel. Sie besagt kurz, dass die Ableitung einer Komposition die Komposition der Ableitungen ist. Etwas ausführlicher lautet sie:

6.2.1. Kettenregel. Es seien $E,F,G$ Banachräume, $X\subset E$, $Y\subset F$ jeweils offene Teillmengen, und $f\colon X\to Y$, sowie $g\colon Y\to G$ in $x_0\in X$ und $y_0=f(x_0)\in Y$ jeweils differenzierbar. Dann ist $g\circ f\colon X\to G$ in $x_0$ differenzierbar und für die Ableitung gilt $$\partial(g\circ f)(x_0)= \partial g\left(f(x_0)\right)\partial f(x_0).$$

Beweis. Differenzierbarkeit der Funktionen $f$ und $g$ impliziert Darstellungen \begin{aligned}
f(x)&=f(x_0) +\partial f(x_0)(x-x_0)+r(x)\|x-x_0\| \\
g(y)&=g(y_0) +\partial g(y_0)(y-y_0)+s(y)\|y-y_0\|
\end{aligned} für $x\in X, y\in Y$ und jeweils in $x_0$ und $y_0$ stetig durch den Nullvektor fortsetzbaren Funktionen $r\colon X\to F$ und $s\colon Y\to G$. Einsetzen $y:=f(x)$ liefert \begin{aligned}
(g\circ f)(x) &=
g\left(f(x_0)\right) + \partial g\left(f(x_0)\right)\big(\partial f(x_0)(x-x_0) +r(x)\|x-x_0\|\big) + s\left(f(x)\right) \big{\|} \partial f(x_0)(x-x_0) + r(x)\|x-x_0\|\big{\|}\\
&=(g\circ f)(x_0) + \big(\partial g\left(f(x_0)\right)\partial f(x_0)\big)(x-x_0) + t(x)\|x-x_0\|
\end{aligned} mit der in $x_0$ stetig durch Null fortsetzbaren Funktion $t\colon X\to G$ mit $$t(x):= \partial g\left(f(x_0)\right) r(x)+ s\left(f(x)\right)\big{\|} \partial f(x_0)\frac{x-x_0}{\|x-x_0\|}+r(x)\big{\|}.$$ qed

Angewandt auf Abbildungen zwischen endlich dimensionalen Vektorräumen, erhalten wir: Die Jacobi-Matrix einer Komposition ist das Produkt der Jacobi-Matrizen der einzelnen Faktoren.

Beispiel. Wir betrachten die Abbildungen \begin{aligned}
f&\colon \mathbb R^2\to\mathbb R^3,\quad (x,y)\mapsto \big(xy,x^2,y^3\big)\\
g&\colon \mathbb R^3\to\mathbb R^2,\quad (\xi,\eta,\zeta)\mapsto \big(\cos \xi,\sin (\eta\zeta)\big)\\
h=g\circ f&\colon \mathbb R^2\to \mathbb R^2,\quad (x,y)\mapsto \big(\cos (xy), \sin(x^2y^3)\big)
\end{aligned} Die Jacobi-Matrizen der einzelnen Abbildungen sind einfach zu berechnen:$$
\partial g=
\left(\begin{matrix}
-\sin \xi&0&0\\
0&\zeta\cos(\eta\zeta)&\eta\cos(\eta\zeta)\end{matrix}\right),\quad
\partial f=\left(\begin{matrix}y&x\\2x&0\\0&3y^2\end{matrix}\right), \quad
\partial h=
\left(\begin{matrix}
-y\sin(xy)&-x\sin(xy)\\
2xy^3\cos(x^2y^3)&3x^2y^2\cos(x^2y^3)
\end{matrix}\right).$$ Wir verifizieren die Kettenregel durch Multiplikation der Matrizen $$ \partial g\cdot \partial f= \partial h,$$ wobei wir die Gleichung $(\xi,\eta,\zeta)=f(x,y)=(xy,x^2,y^3)$ berücksichtigen.

6.2.2. Korollar. Es seien $E,F$ Banachräume, $X\subset E$ eine offene Teilmenge und $x_0\in X$.

  1. Linearität: Sind $f,g\colon X\to F$ in $x_0$ differenzierbar und $\lambda,\tau\in \mathbb K$. Dann ist auch $\lambda f+\tau g$ in $x_0$ differenzierbar und es gilt $$\partial (\lambda f+\tau g)(x_0)=\lambda\partial f(x_0)+\tau \partial g(x_0).$$ Insbesondere ist $\mathcal C^1(X,F)$ ein Untervektorraum von $\mathcal C^0(X,F)$ und die Ableitung $$\partial \colon \mathcal C^1(X,F)\to \mathcal C^0(X,F)$$ ist eine lineare Abbildung.
  2. Leibnizregel: Sind $f,g \colon X \to \mathbb K$ in $x_0$ differenzierbar, so auch das Produkt $fg$, und es gilt $d(f g)=gdf+fdg.$

Beweis.

  1. Die Abbildung $\lambda f+\tau g$ ist die Komposition einer in $x_0$ differenzierbaren Abbildung $$h\colon X\to F\times F, x\mapsto \big(f(x),g(x)\big)$$ mit der linearen Abbildung $$\phi\colon F\times F\to F, (y_1,y_2)\mapsto \lambda y_1+\tau y_2.$$ Wegen $\partial h=\big(\partial f,\partial g\big)$ und $\partial \phi =\phi$ folgt aus der Kettenregel $$\partial\big(\lambda f+\tau g\big)=\partial (\phi\circ h)=\partial\phi\partial h=\phi(\partial f,\partial g)=\lambda\partial f+\tau\partial g.$$
  2. Die Abbildung $fg$ ist Komposition $fg=m\circ h$ der in $x_0$ differenzierbaren Funktion $$h\colon X\to \mathbb K\times \mathbb K, x\mapsto \big(f(x),g(x)\big)$$ und der Multiplikationsabbildung $$m\colon \mathbb K\times \mathbb K\to \mathbb K, m\colon (\alpha,\beta)\mapsto \alpha\beta.$$ Es gilt $\partial h=\big(df, dg\big)$ und die Jacobische von $m$ an der Stelle $(\alpha,\beta)\in \mathbb K^2$ ist gegeben durch $\partial m(\alpha,\beta)=(\beta,\alpha)$. Die Kettenregel liefert $$d(fg)=\big(\partial m(f,g)\big)\partial h=(g,f){{df}\choose{dg}}=gdf+fdg.$$

qed

Unterstützt von Drupal